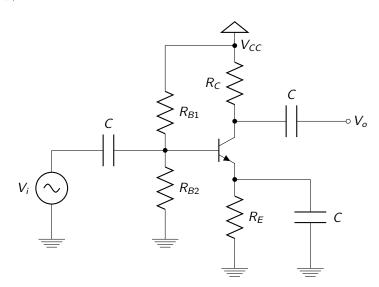


Tecnología Electrónica Examen de teoría – Temas 4 a 6 28 de noviembre de 2013


Curso 2013/2014

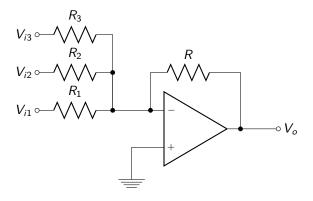
NOMBRE	<u>GRUPO</u>

Instrucciones:

- El examen consta de 3 ejercicios y dura 45 minutos.
- Solo se evalúa lo escrito a bolígrafo.
- Es obligatorio entregar todas las hojas utilizadas.
- No se permiten preguntas.
- 1. (3,5 ptos.) Para el siguiente amplificador de pequeña señal:

Use los siguientes valores: $R_{B1}=10~\rm k\Omega,~R_{B2}=10~\rm k\Omega,~R_{C}=20~\rm k\Omega,~r_{\pi}=5~\rm k\Omega,~\beta=20.$

- a) (0,5 ptos.) Represente el modelo equivalente en pequeña señal.
- b) (0,75 ptos.) Calcule la ganancia de tensión, $A_V = V_o/Vi$.
- c) (0,75 ptos.) Calcule la resistencia de entrada, $R_i = V_i/I_i$.
- d) (0,75 ptos.) Calcule la resistencia de salida, $R_o = V_o/I_o$ (no se considerarán respuestas que no estén adecuadamente justificadas).
- e) (0,75 ptos.) Calcule la ganancia de corriente, $A_I = I_o/I_i$.


Tecnología Electrónica Examen de teoría – Temas 4 a 6 28 de noviembre de 2013

Curso 2013/2014

NOMBRE	<u>GRUPO</u>

2. (3,5 ptos.) Para el siguiente circuito:

Use los siguientes valores: $R=6 \,\mathrm{k}\Omega$.

a) (1,5 ptos.) Se desea implementar un sumador inversor que represente la siguiente función:

$$V_o = -\left(V_{i1} + \frac{1}{2}V_{i2} + \frac{1}{3}V_{i3}\right)$$

Obtenga los valores de R_1 , R_2 y R_3 (Nota: Obtenga V_o como función de V_{i1} , V_{i2} y V_{i3} y deduzca a partir de ella los valores de las resistencias).

b) (1,5 ptos.) Si las tres tensiones a la entrada son iguales ($V_i = V_{i1} = V_{i2} = V_{i3}$ y se desea que V_o sea igual a:

$$V_o = -V_i$$

Obtenga los valores de R_1 , R_2 y R_3 . Suponga que $R_1 = R_2 = R_3$.

c) (0,5 ptos.) ¿En qué consiste la aproximación del cortocircuito virtual? ¿Por qué se puede aplicar a este circuito?

Tecnología Electrónica Examen de teoría – Temas 4 a 6 28 de noviembre de 2013

Curso 2013/2014

NOMBRE	<u>GRUPO</u>

3. **(3 ptos.)** Se desea implementar mediante puertas digitales la siguiente función que viene definida por la siguiente tabla de la verdad:

а	b	С	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

- a) (1 pto.) Obtenga a partir de la tabla de la verdad la expresión de la primera forma canónica de f.
- b) (0,5 ptos.) Construya la tabla de Karnaugh (Nota: En este apartado solo se pide que rellene con 0's y 1's los huecos de la tabla).

	a'b'	a' b	ab	ab'
	00	01	11	10
c'				
0				
С				
1				

- c) (1 pto.) A partir de la tabla del apartado anterior obtenga la expresión simplificada de f. ¿Es importante la entrada a? (Nota: La expresión resultante no debería contener más de dos sumandos).
- d) (0,5 ptos.) Se decide implementar físicamente la expresión del apartado anterior con puertas lógicas. Si en su caso prima el consumo sobre la velocidad de conmutación, ¿qué familia de tecnologías escogería (CMOS o TTL)? ¿Cuántas puertas necesitaría? ¿De qué tipo (AND, OR, ...)? Justifique la respuesta.